ENVIRONMENTAL GEOLOGY, GEOSCIENCES (BS)

Degree: Bachelor of Science
Major: Geosciences
Concentration: Environmental Geology
Program Major Code: 3473

About This Major . . .

The Bachelor of Science degree with a major in Geosciences and a concentration in Environmental Geology is designed for students who (1) desire a strong liberal arts education with emphasis on environmental issues within the earth sciences, (2) wish to pursue a graduate degree in environmental geology, or (3) desire a professional or technical geoscience career. The Environmental Geology option has the same basic framework as the Geology concentration with a stronger emphasis on geologic hazards, ground-water and surface-water hydrology, biological systems, and environmental science. Recent graduates are attending graduate programs at major universities or have entered the work force as geological technicians or professional geologists.

Most classes have a strong field component so that students benefit from the diverse geological setting of the Grand Junction area. Equipment available includes hydrologic research equipment such as flow meters, stream tables, surveying equipment, and GPS units. Students engage in a capstone research project/thesis during their senior year that involves independent research and the completion of a professional report and presentation. This capstone experience develops professional skills and provides students with a portfolio of their work for future employers or graduate schools.

For more information on what you can do with this major, visit Career Services’ What to Do with a Major? (https://www.coloradomesa.edu/career/students/explore/major.html) resource.

All CMU baccalaureate graduates are expected to demonstrate proficiency in specialized knowledge/applied learning, quantitative fluency, communication fluency, critical thinking, personal and social responsibility, and information literacy. In addition to these campus-wide student learning outcomes, graduates of this major will be able to:

1. Articulate the fundamental knowledge base and ideas of the major fields of geoscience. (Specialized Knowledge)
2. Collect and interpret geoscience field data. (Applied Learning/Critical Thinking)
3. Collect and interpret geoscience laboratory data. (Applied Learning/Critical Thinking)
4. Use technology (e.g. computer software) for evaluating quantitative geoscience data. (Quantitative Fluency)
5. Write an effective report on a geoscience study. (Communication Fluency)
6. Give an effective oral presentation on a geoscience study. (Communication Fluency)

Requirements

Each section below contains details about the requirements for this program. Select a header to expand the information/requirements for that particular section of the program’s requirements.

To print or save an overview of this program’s information, including the program description, learning outcomes, requirements, suggested course sequencing (if applicable), and advising and graduation information, scroll to the bottom of the left-hand navigation menu and select ‘Print Options’. This will give you the options to either ‘Send Page to Printer’ or ‘Download PDF of This Page’. The ‘Download PDF of This Page’ option prepares a much more concise presentation of all program information. The PDF is also printable and may be preferable due to its brevity.

Institutional Degree Requirements

The following institutional degree requirements apply to all CMU baccalaureate degrees. Specific programs may have different requirements that must be met in addition to institutional requirements.

- 120 semester hours minimum.
- Students must complete a minimum of 30 of the last 60 hours of credit at CMU, with at least 15 semester hours in major discipline courses numbered 300 or higher.
- 40 upper-division credits (an alternative credit limit applies to the Bachelor of Applied Science degree).
- 2.00 cumulative GPA or higher in all CMU coursework.
- A course may only be used to fulfill one requirement for each degree/certificate.
- No more than six semester hours of independent study courses can be used toward the degree.
- Non-traditional credit, such as advanced placement, credit by examination, cooperative education and internships, cannot exceed 30 semester credit hours for a baccalaureate degree. A maximum of 15 of the 30 credits may be for cooperative education, internships, and practica.
- Pre-collegiate courses (usually numbered below 100) cannot be used for graduation.
- Capstone exit assessment/projects (e.g., Major Field Achievement Test) requirements are identified under Program-Specific Degree Requirements.
- The Catalog Year determines which program sheet and degree requirements a student must fulfill in order to graduate. Visit with your advisor or academic department to determine which catalog year and program requirements you should follow.
- See “Requirements for Undergraduate Degrees and Certificates” in the catalog for a complete list of graduation requirements.

Essential Learning Requirements

(31 semester hours)

See the current catalog for a list of courses that fulfill the requirements below. If a course is an Essential Learning option and a requirement for your major, you must use it to fulfill the major requirement and make a different selection for the Essential Learning requirement.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 111</td>
<td>English Composition I-GTCO1</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 112</td>
<td>English Composition II-GTCO2</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 151</td>
<td>Calculus I-GT-MA1</td>
<td>3</td>
</tr>
</tbody>
</table>
History
Select one History course 3

Humanities
Select one Humanities course 3

Social and Behavioral Sciences
Select one Social and Behavioral Sciences course 3
Select one Social and Behavioral Sciences course 3

Fine Arts
Select one Fine Arts course 3

Natural Sciences
Select one Natural Sciences course 3
Select one Natural Sciences course with a lab 3 4

Total Semester Credit Hours 31

1 Must receive a grade of "C" or better and must be complete by the time the student has 60 semester hours.

2 This is a 5 semester credit hour course. 3 credits apply to the Essential Learning Requirements and 2 credits apply to Foundation Courses.

3 We recommend selecting one of the following sets of courses, with BIOL 105/BIOL 105L, PHYS 132/PHYS 132L, or CHEM 132/CHEM 132L as the best choices for students interested in attending graduate school: BIOL 105/BIOL 105L, PHYS 112/PHYS 112L, PHYS 132/PHYS 132L, or CHEM 132/CHEM 132L.

Of the Total Semester Credit Hours, 1 credit applies to electives and 31 credits apply to Essential Learning requirements. See footnotes for more details.

Other Lower Division Requirements

Wellness Requirement
KINE 100 Health and Wellness 1
Select one Activity course 1

Essential Learning Capstone 1
ESSL 290 Maverick Milestone 3
ESSL 200 Essential Speech 1
Total Semester Credit Hours 6

1 Essential Learning Capstone must be taken after completion of the Essential Learning English and Mathematics requirements, and when a student has earned between 45 and 75 hours.

Foundation Courses
(15 semester hours, must earn a grade of “C” or better in each course.)

CHEM 131 General Chemistry I-GTSC1 4
CHEM 131L General Chemistry Laboratory I-GTSC1 1
Select one of the following: 1 5

Program Specific Degree Requirements
(58 semester hours, must earn a grade of “C” or better in each course)

Core Courses

Code Title
CHEM 131 General Chemistry I-GTSC1 4
CHEM 131L General Chemistry Laboratory I-GTSC1 1
Select one of the following: 1 5
GEOL 325 Introduction to Engineering Geology
GEOL 351 Applied Geochemistry
GEOL 359 Survey of Energy-Related Natural Resources
GEOL 361 Survey of Mineral-Related Natural Resources
GEOL 370 Renewable Energy
GEOL 394 Natural Resources of the West
GEOL 404 Geophysics
& 404L and Geophysics Laboratory
GEOL 443 Field-Based Depositional Systems
& 443L and Field-Based Depositional Systems Laboratory
GEOL 455 River Dynamics
& 455L and River Dynamics Laboratory
GEOL 497 Structured Research
GIST 332 Introduction to Geographic Information Systems
& 332L and Introduction to Geographic Information Systems Laboratory
ENVS 312 Soil Science and Sustainability
& 312L and Soil Science and Sustainability Laboratory
POLS 488 Environmental Politics and Policy
CHEM 132 General Chemistry II-GTSC1
& 132L and General Chemistry Laboratory II-GTSC1
MATH 152 Calculus II
STAT 311 Statistical Methods
PHYS 112 General Physics-GTSC1
& 112L and General Physics Laboratory-GTSC1
PHYS 132 Electromagnetism and Optics-GTSC1
& 113L and Electromagnetism and Optics Laboratory-GTSC1

Total Semester Credit Hours 9

1. Either GEOL 111/GEOL 111L or GEOL 113/GEOL 113L may be taken for credit, but not both.
2. Either PHYS 112/PHYS 112L or PHYS 132/PHYS 132L may be taken for credit, but not both. Eight hours of Restricted and General Electives must be upper division.

General Electives

All college level courses appearing on your final transcript, not listed above that will bring your total semester hours to 120 hours. 10 semester hours; additional hours of upper division may be needed. 8 hours of Restricted and General Electives must be upper division.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select electives</td>
<td>10</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 10

Suggested Course Plan

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGL 11</td>
<td>English Composition I-GTSC1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 151</td>
<td>Calculus I-GTMA1</td>
<td>5</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GEOL 111</td>
<td>Principles of Physical Geology-GTSC1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>& 111L</td>
<td>and Principles of Physical Geology Laboratory-GTSC1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GEOL 113</td>
<td>Field-Based Introduction to Physical Geology-GTSC1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& 113L</td>
<td>and Field-Based Introduction to Physical Geology Laboratory-GTSC1</td>
<td>4</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>GEOL 202</td>
<td>Introduction to Field Studies</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GEOL 250</td>
<td>Environmental Geology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 131</td>
<td>General Chemistry I-GTSC1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>& 131L</td>
<td>and General Chemistry Laboratory I-GTSC1</td>
<td>5</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PHYS 111</td>
<td>General Physics-GTSC1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>& 111L</td>
<td>and General Physics Laboratory-GTSC1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>PHYS 131</td>
<td>Fundamental Mechanics-GTSC1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>& 131L</td>
<td>and Fundamental Mechanics Laboratory-GTSC1</td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>GEOL 301</td>
<td>Structural Geology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& 301L</td>
<td>and Structural Geology Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GEOL 331</td>
<td>Crystallography and Mineralogy</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& 331L</td>
<td>and Crystallography and Mineralogy Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GEOL 355</td>
<td>Basic Hydrology</td>
<td>3</td>
</tr>
</tbody>
</table>

Essential Learning - Natural Science with Lab 4

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>GEOL 402</td>
<td>Applications of Geomorphology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& 402L</td>
<td>and Applications of Geomorphology Laboratory</td>
<td>4</td>
</tr>
</tbody>
</table>

Restricted Electives 5

General Electives 4

Spring Semester

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GEOL 415</td>
<td>Introduction to Ground Water</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& 415L</td>
<td>and Introduction to Ground Water Laboratory</td>
<td>4</td>
</tr>
</tbody>
</table>

KINA Activity 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 444</td>
<td>Sedimentology and Stratigraphy</td>
<td>4</td>
</tr>
<tr>
<td>& 444L</td>
<td>and Sedimentology and Stratigraphy Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 490</td>
<td>Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 12
Advising and Graduation

Advising Process and DegreeWorks

Documentation on the pages related to this program is intended for informational purposes to help determine what courses and associated requirements are needed to earn a degree. The suggested course sequencing outlines how students could finish degree requirements. Some courses are critical to complete in specific semesters, while others may be moved around. Meeting with an academic advisor is essential in planning courses and altering the suggested course sequencing. It is ultimately the student's responsibility to understand and fulfill the requirements for her/his intended degree(s).

DegreeWorks is an online degree audit tool available in MAVzone. It is the official record used by the Registrar's Office to evaluate progress towards a degree and determine eligibility for graduation. Students are responsible for reviewing their DegreeWorks audit on a regular basis and should discuss questions or concerns with their advisor or academic department head. Discrepancies in requirements should be reported to the Registrar's Office.

Graduation Process

Students must complete the following in the first two months of the semester prior to completing their degree requirements:

- Review their DegreeWorks audit and create a plan that outlines how unmet requirements will be met in the final semester.
- Meet with their advisor and modify their plan as needed. The advisor must approve the final plan.
- Submit the “Intent to Graduate” form to the Registrar's Office to officially declare the intended graduation date and commencement ceremony plans.
- Register for all needed courses and complete all requirements for each degree sought.

Submission deadlines and commencement details can be found at http://www.coloradomesa.edu/registrar/graduation.html.

If a student's petition for graduation is denied, it will be her/his responsibility to consult the Registrar's Office regarding next steps.